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Abstract

Self-supervised learning (SSL) on graph-
structured data has attracted considerable
attention recently. Masked graph autoencoder, as
one promising generative graph SSL approach
that aims to recover masked parts of the input
graph data, has shown great success in various
downstream graph tasks. However, existing
masked graph autoencoders fail to consider the
degree of difficulty of recovering the masked
edges that often have different impacts on the
model performance, resulting in suboptimal node
representations. To tackle this challenge, in this
paper, we propose a novel curriculum based
self-supervised masked graph autoencoder that
is able to capture and leverage the underlying
degree of difficulty of data dependencies hidden
in edges, and design better mask-reconstruction
pretext tasks for learning informative node
representations. Specifically, we first design a
difficulty measurer to identify the underlying
structural degree of difficulty of edges during
the masking step. Then, we adopt a self-paced
scheduler to determine the order of masking
edges, which encourages the graph encoder
to learn from easy to difficult parts. Finally,
the masked edges are gradually incorporated
into the reconstruction pretext task, leading to
high-quality node representations. Experiments
on several real-world node classification and link
prediction datasets demonstrate the superiority of
our proposed method over state-of-the-art graph
self-supervised learning baselines. This work is
the first study of curriculum strategy for masked
graph autoencoders, to the best of our knowledge.
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1. Introduction
Graph-structured data is ubiquitous across various do-
mains, including social networks, citation networks, and
e-commerce systems. Graph neural networks (GNNs) have
demonstrated significant success in learning meaningful rep-
resentations from such data, particularly in supervised (Xu
et al., 2019) and semi-supervised (Kipf & Welling, 2017;
Hamilton et al., 2017) learning settings, where task-specific
labels are available to guide the learning process. However,
acquiring a large amount of high-quality annotations is often
expensive and impractical in real-world applications.

Self-supervised learning (SSL), an unsupervised paradigm
widely adopted in computer vision and natural language
processing (Chen et al., 2020; He et al., 2020), has re-
cently gained significant attention in the field of graph learn-
ing. SSL enables models to learn informative representa-
tions by solving carefully designed pretext tasks without
requiring labeled data. Existing graph SSL methods can
be broadly categorized into contrastive and generative ap-
proaches. Contrastive methods, such as DGI (Veličković
et al., 2019), MVGRL (Hassani & Khasahmadi, 2020), and
BGRL (Thakoor et al., 2022), predominate the field by lever-
aging instance discrimination as the primary pretext task.
Although augmentation-free variants like AFGRL (Wang
et al., 2022a) and IGCL (Li et al., 2023a) present promis-
ing alternatives, many classical contrastive methods still
depend heavily on heuristic graph augmentations. Their per-
formance can degrade when the selected augmentations are
misaligned with the objectives of downstream tasks (Zhang
et al., 2021a). In contrast, generative SSL methods address
this limitation more naturally by reconstructing missing
components of the input graph. Representative models such
as GPT-GNN (Hu et al., 2020b), GraphMAE (Hou et al.,
2022), and S2GAE (Tan et al., 2023) demonstrate strong
performance while avoiding the need for manually crafted
augmentations.

Despite the notable progress of generative graph SSL meth-
ods, existing approaches typically ignore the varying dif-
ficulty levels of pretext tasks during training and treat all
training samples uniformly, resulting in suboptimal perfor-
mance. Intuitively, pretext tasks should be designed to start
with easier data samples and gradually progress to more dif-
ficult ones. Introducing overly challenging tasks at the early
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stages of training can overwhelm the GNN encoder, which
is typically initialized with random parameters and lacks
the capacity to handle complex reconstructions. Conversely,
prolonged training on overly simplistic tasks yields dimin-
ishing benefits and fails to further improve representation
quality. The design of tailored easy-to-hard pretext tasks for
enhancing graph representation learning remains an under-
explored direction, which poses the following challenges.

• It is technically difficult to design tailored reconstruc-
tion tasks to encourage the GNNs to capture informa-
tive patterns of the input graph into representations.

• It is challenging to derive a proper principle to quantify
the difficulty of reconstruction samples for training the
GNNs.

• It is also non-trivial to design a feasible scheduling
strategy to gradually exploit data samples for recon-
struction by explicitly considering the current training
status of GNNs.

To tackle these challenges, we propose Curriculum Masked
Graph AutoEncoder (Cur-MGAE), a novel framework de-
signed to capture and leverage the inherent difficulty of struc-
tural dependencies in graph edges. Cur-MGAE aims to
construct more effective mask-reconstruction pretext tasks
by integrating a curriculum learning paradigm into genera-
tive graph self-supervised learning. Specifically, our method
enables GNNs to learn informative representations by gradu-
ally incorporating training samples in a tailored easy-to-hard
order. We first design a structure-aware edge reconstruction
task, where the goal is to recover intentionally masked edges
based on the remaining unmasked graph structure. This pre-
text task encourages the GNN encoder to extract meaningful
patterns from the graph. To quantify task difficulty, we intro-
duce a self-supervised mechanism that identifies the easiest
K edges the encoder is most confident in reconstructing.
This allows for a principled estimation of reconstruction
difficulty across edge samples. Furthermore, we develop a
self-paced learning strategy that dynamically selects edges
to be used in training, progressively increasing the task dif-
ficulty in alignment with the encoder’s evolving learning
capacity. The processes of edge selection and structural re-
construction are integrated into a unified training framework.
Ultimately, the GNN encoder is trained using a meaningful
curriculum that aligns edge difficulty with model capacity,
yielding more powerful node representations and improved
performance on downstream tasks.

We theoretically analyze the convergence guarantee of this
tailored training paradigm by demonstrating its ability to
avoid saddle points and achieve second-order convergence.
Extensive experiments on various real-world node classifica-
tion and link prediction benchmarks show that our proposed

model can achieve significant performance gains against
state-of-the-art methods.

The contributions of this paper are summarized as follows:

• We introduce a novel method that trains the GNN en-
coder by presenting data in a tailored, easy-to-hard
order, enabling more effective design of pretext tasks.
To the best of our knowledge, this is the first work to
explore curriculum learning in graph self-supervised
learning.

• We propose a unified framework that jointly recon-
structs missing edges based on the unmasked graph
structure and schedules training edges using a self-
paced learning strategy, thereby improving the effec-
tiveness of the GNN encoder.

• We provide theoretical analysis of the convergence
properties of the proposed Cur-MGAE method and
demonstrate through extensive experiments that it con-
sistently outperforms state-of-the-art graph SSL meth-
ods, including both contrastive and generative ap-
proaches.

The rest of the paper is organized as follows. We first
introduce the details of our proposed Cur-MGAE method
in Section 2. In Section 3, we present the experimental
results to show the effectiveness of the method, including
quantitative comparisons, ablation studies, etc. We review
the related works in Section 4. Finally, we conclude this
work in Section 5.

2. Method
In this section, we present Cur-MGAE , a self-supervised
framework designed to learn informative representations
through the structure-aware curriculum. Specifically, Cur-
MGAE consists of three key components: a structure-aware
masked autoencoder, a complexity-guided curriculum mask-
ing module, and a self-paced mask scheduler. The overall
framework is illustrated in Figure 1. The key notations in
the method are summarized in Appendix A.

2.1. Structure-aware Masked Autoencoder

We propose a structure-aware masked autoencoder based
on the edge reconstruction task to learn informative node
representations without requiring extra supervision.

GNN Encoder. Let the input graph be denoted as G =
(V, E), where V and E are the sets of nodes and edges,
respectively. It can be represented as G = (X,A), where
X is the node feature matrix and A is the adjacency matrix.
We apply a GNN to encode node representations:

h(k)
v = COM(h(k−1)

v ,AGG(h(k−1)
u : u ∈ Nv)), (1)
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Figure 1. The framework of our proposed Cur-MGAE method. Given an input graph, we first introduce a complexity-guided curriculum
masking module to identify edges to be masked, where each edge is assigned a difficulty score based on its reconstruction residual error.
Next, we design a self-paced mask scheduler to dynamically schedule the masking curriculum according to the training stage. Finally, we
employ a structure-aware masked autoencoder to perform self-supervised reconstruction of the graph structure.

where h(k)
v is the embedding of node v at the k-th layer, and

Nv = {u : (v, u) ∈ E} denotes its neighborhood. AGG(·)
aggregates messages from neighbors, and COM(·) com-
bines them to update the embedding. We stack K GNN lay-
ers to derive multi-hop embeddings {h(1)

v , h
(2)
v , ..., h

(K)
v }.

The final node representations are denoted as ENC(X,A) ∈
RN×d, where N is the number of nodes, d is the embedding
dimension, and ENC(·) is the encoder.

Cross-correlation Decoder. After obtaining node embed-
dings from the GNN encoder, we design a cross-correlation
decoder to reconstruct the graph structure by capturing inher-
ent similarities between nodes following (Tan et al., 2023).
Specifically, we compute edge embeddings as:

hev,u = ||Kk,j=1h
(k)
v ⊙ h(j)

u , (2)

where ⊙ denotes element-wise multiplication, || represents
concatenation, and hev,u

∈ RdK2

is the resulting edge
embedding. This formulation emphasizes shared features
between node pairs while suppressing dissimilar compo-
nents, enabling the model to retain only highly correlated

structural patterns. The resulting edge embeddings are fed
into a multilayer perceptron (MLP) with a sigmoid acti-
vation to estimate the existence probability of each edge:
g(v, u) = MLP(hev,u). By selectively preserving informa-
tive and correlated features, this design filters out noise and
facilitates more accurate and efficient edge prediction.

Reconstruction Task. We adopt a mask-reconstruction
paradigm for self-supervised learning to enhance the quality
of the learned node representations. Specifically, we select a
part of the edges to be masked in the original graph to obtain
the perturbed graph: Ã = A − Amask. We denote Amask
as the adjacency matrix of the masked edges Emask. Then
we adopt the reconstruction loss as the supervision signal:
LSSL = ℓ(A,DEC(ENC(X, Ã)), whose implementation
is as follows:

LSSL = − 1

|Emask|
∑

(v,u)∈Emask

log
exp(g(v, u))∑

v′∈V exp(g(v, v′))
. (3)

g(·) is the predicted probability of the presence of an ex-
isting edge, namely g(v, u) = MLP(||Kk,j=1h

(k)
v ⊙ h

(j)
u ),
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where h
(j)
u and h

(k)
v denote the j-th and k-th hidden repre-

sentation of node u and v, respectively. The learned node
representations encode rich structural and attribute infor-
mation, sufficient to reconstruct the original graph from
perturbed inputs and further enhance performance in down-
stream tasks.

2.2. Complexity-guided Curriculum Masking

Since different edges in a graph contribute unequally to its
structure, randomly masking edges can pose optimization
challenges during the reconstruction process. In particular,
masking too many critical structural edges early in training
may lead to excessively difficult reconstruction tasks, es-
pecially when the GNN encoder is still undertrained. To
mitigate this issue, we introduce a complexity-guided cur-
riculum masking module that progressively increases task
difficulty by selecting edges in an easy-to-hard manner. The
key idea is to identify structurally important edges and post-
pone their masking, thereby enabling a smoother and more
effective learning trajectory.

Specifically, we identify edges that are structurally impor-
tant to the graph and progressively mask them to increase
the learning difficulty during the training process. We for-
mally define the difficulty of an edge as a score reflect-
ing how challenging it is for the current model to predict
the edge correctly. To quantify this difficulty, we first
use the current model to reconstruct the original graph as:
Are = DEC(ENC(X,A)).

The reconstructed adjacency matrix Are captures the
model’s internal estimation of edge probabilities, which
can be interpreted as its confidence in the existence of each
edge. Intuitively, lower confidence suggests that an edge
is harder to reconstruct for the current model, indicating
higher structural complexity. We therefore propose to use
the structural residual (Zhang et al., 2023a) between the
original and predicted graphs as a proxy for edge difficulty:
R = A−Are. By applying a masking strategy that targets
the K easiest edges, those with the smallest residuals, we
simplify the reconstruction task, particularly during the early
training stages. This allows the model to focus on learning
fundamental structural patterns before encountering more
complex ones (Zhang et al., 2023a; Li et al., 2023b). Conse-
quently, this curriculum-guided masking strategy enhances
both the efficiency and effectiveness of the training process.

2.3. Self-paced Mask Scheduler

Here, we propose a self-paced mask scheduler to progres-
sively and autonomously incorporate an increasing num-
ber of edges throughout the training process (Zhang et al.,
2023a; Li et al., 2023b). One straightforward solution is to
gradually increase the value of K during the training process.
However, dynamically identifying and updating a suitable

K during training is non-trivial. Edge selection inherently
poses a discrete optimization problem over a large topologi-
cal space, which significantly complicates the learning pro-
cess. To address this, we relax the edge selection matrix S(t)

from binary values to continuous values within [0, 1], trans-
forming the problem into a continuous constrained optimiza-
tion task. Specifically, we treat the masking constraint as a
Lagrangian multiplier and introduce a regularization compo-
nent to the loss function: f(S;λ,A) = λ||S(t) ⊙A−A||.
Here, S(t) denotes the soft edge selection matrix at training
iteration t, sharing the same dimensions as the adjacency
matrix A. After optimization, the entries in S(t) are thresh-
olded at 0.5 to yield a binary mask 0, 1 for edge selection,
resulting in the masked adjacency matrix A(t) = S(t) ⊙A,
where ⊙ denotes element-wise multiplication.

Note that the regularization term promotes the masking of
as many edges as possible, governed by the coefficient λ.
As λ increases during training, more edges are gradually
incorporated. This process effectively schedules edge mask-
ing in an easy-to-hard manner. The evolving strategy for
updating λ is detailed in Appendix D.3. Combining both the
residual-based selection and the regularization term (Zhang
et al., 2023a), the loss function for our self-paced mask
scheduler is given by:

LSPCL = β
∑
i,j

SijRij + f(S;λ,A), (4)

where β is a balancing hyperparameter, S extracts the se-
lected edges, and Rij = ||Aij − Ã

(t)
ij || denotes the edge

residual, with Ã
(t)
ij being the predicted edge value. The L2

norm is used for measuring residuals.

However, continuously increasing the number of masked
edges may eventually compel the model to make uninformed
or arbitrary predictions about the graph structure. To avoid
this issue, we introduce a mask ratio hyperparameter that
constrains the maximum proportion of edges allowed to be
masked. Another critical concern is that relying solely on
difficulty-based edge selection tends to consistently mask
only the easiest edges during training. This could limit the
model’s generalizability by overfitting to these simpler struc-
tures. To address this, we introduce a split ratio hyperparam-
eter that enables a portion of the masked edges to be selected
randomly. Specifically, a fraction of the masked edges, de-
noted as ADES, is sampled uniformly at random, while the
remaining edges, denoted as ARES, are selected based on
their difficulty scores. The union of these two subsets forms
the complete masked edge set Amask. A lower split ratio
results in a higher degree of randomness in the masking pro-
cess, thereby encouraging exploration. Conversely, a higher
split ratio prioritizes difficulty-based masking, enhancing
exploitation. By appropriately tuning this hyperparameter,
we strike a balance between exploration and exploitation,
thereby mitigating overfitting and improving the quality of
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Algorithm 1 The optimization process of Cur-MGAE
1: Input: Node features X, adjacency matrix A, step size µ,

regularization coefficient γ
2: Output: Trained GNN parameters w
3: Initialize w(0), S(0), and λ(0)

4: Compute A(0) = S(0) ⊙A
5: while not converged do
6: w(t) = argminwLSSL(X,A(t−1);w) + γ

2
||w −

w(t−1)||
7: Generate embedding Z(t) from A using the updated GNN

model f
8: For all node pairs (i, j), predict edge existence Ã

(t)
ij =

g(z
(t)
i , z

(t)
j )

9: Relax S(t) to the continuous domain and optimize it as
S(t) = argminSLSPCL + γ

2
||S− S(t−1)||

10: K = |{(i, j) : S(t)
ij ≥ 0.5}|

11: if K ≥ mask ratio × |E| then
12: K = mask ratio × |E|
13: else
14: Update λ based on the designed curriculum pace
15: end if
16: Select the top-split ratio × K edges with the highest Sij

values and assign to S
(t)
DES

17: Randomly select the remaining (1− split ratio)×K edges
and assign to S

(t)
RES

18: S(t) = S
(t)
DES + S

(t)
RES

19: Update the perturbed adjacency matrix A(t) = S(t) ⊙A
20: end while

the learned node representations.

2.4. Optimization Procedure

Our proposed model aims to minimize the objective func-
tion Lall, which involves optimizing two distinct sets of
parameters. This naturally leads to a challenging bi-level
optimization problem. To address this, we design an op-
timization algorithm that jointly trains two separate self-
supervised modules, each with its corresponding objective.
The overall loss function is formulated as:

Lall = LSSL + LSPCL. (5)

To ensure a smooth transition across training iterations, we
incorporate regularization terms into the optimization pro-
cess: γ

2 ||w − w(t−1)|| and γ
2 ||S − S(t−1)||. These terms

penalize abrupt changes in the model parameters w and
the edge selection matrix S, thereby stabilizing training
dynamics. The complete training procedure is outlined in
Algorithm 1.

Time Complexity. The time complexity of our proposed
model is O(Ed+Nd2), where N and E denote the numbers
of nodes and edges in the graph, respectively, and d is the
dimensionality of the node representations. Specifically,
our model adopts a message-passing GNN as the encoder,

which incurs a complexity of O(Ed+Nd2). The decoder
and the self-paced mask scheduler each contribute a time
complexity of O(Ed), as they involve computing residual
errors for each edge. The complexity-guided curriculum
masking module operates with a time complexity of O(E),
since it selects from existing edges rather than the full N×N
set of potential edges. Overall, the time complexity of our
method is comparable to the baselines, which also typically
scale as O(Ed+Nd2).

2.5. Theoretical Analyses

We present theoretical analyses on the convergence proper-
ties of our method in Theorems 1 and 2 following (Zhang
et al., 2023a). Detailed proofs are provided in Appendix B.

Theorem 1 (Convergence Away from Saddle Points).
For a sufficiently large γ, if the second derivatives of
LSSL(X,A(t−1);w) and f(S;λ,A) are continuous, any
bounded sequence (w(t),S(t)) generated by Algorithm 1
with random initialization will almost surely avoid conver-
gence to any strict saddle point of Lall.

Theorem 2 (Convergence to Second-order Stationary
Points). For a sufficiently large γ, if the second deriva-
tives of LSSL(X,A(t−1);w), and f(S;λ,A) are continu-
ous, and both functions satisfy the Kuradyka-Lojasiewicz
(KL) property (Wang et al., 2022b), then any bounded se-
quence (w(t),S(t)) generated by Algorithm 1 with random
initialization will almost surely converge to a second-order
stationary point of Lall.

3. Experiment
In this section, we conduct comprehensive experiments
to evaluate the effectiveness of the proposed Cur-MGAE
method. This includes the experimental setup, quantita-
tive evaluations on node classification and link prediction
benchmarks, and in-depth analyses. Additional experimen-
tal results are provided in Appendix G.

3.1. Experimental Setup

Datasets. We evaluate node classification on three Plan-
etoid datasets (Cora, Citeseer, and Pubmed (Sen et al.,
2008)) and three commonly used citation/co-authorship
datasets: Coauthor-CS (Shchur et al., 2019), Coauthor-
Physics (Shchur et al., 2019), and OGBN-arxiv (Hu et al.,
2020a). Accuracy (%) is used as the evaluation metric for
these tasks. For link prediction, we use the same three Plane-
toid datasets and additional large-scale benchmarks from the
Open Graph Benchmark (OGB) (Hu et al., 2021), including
OGBN-ddi, OGBL-collab, and OGBL-ppa. We report the
area under the ROC curve (AUC, %) (Bradley, 1997) for the
three Planetoid datasets, and the Hit rate (Hits@N) for OGB
datasets, following (Tan et al., 2023) for fair comparison.
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Table 1. Node classification accuracy (%) of our proposed method and baselines. In each column, the boldfaced score denotes the best
result among all methods. The rightmost column shows the average rank. Our method achieves the best average rank.

Dataset Cora Citeseer Pubmed Coauthor-CS Coauthor-Physics OGBN-arxiv Rank

DGI 85.41 ± 0.34 74.51 ± 0.51 76.80 ± 0.60 92.77 ± 0.38 94.55 ± 0.13 67.08 ± 0.43 9.50
GIC 87.70 ± 0.01 76.39 ± 0.02 77.40 ± 1.90 91.33 ± 0.30 93.49 ± 0.42 64.00 ± 0.22 9.17
MVGRL 85.86 ± 0.15 73.18 ± 0.22 80.10 ± 0.70 92.87 ± 0.13 95.35 ± 0.08 68.33 ± 0.32 8.42
BGRL 86.16 ± 0.20 73.96 ± 0.14 82.05 ± 0.85 93.35 ± 0.06 96.16 ± 0.09 71.77 ± 0.19 4.00
GAE 83.60 ± 0.52 63.37 ± 1.21 78.23 ± 1.63 89.79 ± 0.09 93.26 ± 0.05 66.01 ± 0.37 13.67
GraphSage 74.30 ± 1.84 60.20 ± 2.15 81.96 ± 0.74 89.74 ± 0.19 93.35 ± 0.06 64.79 ± 2.91 13.00
ARGVA 85.86 ± 0.72 73.10 ± 0.86 81.51 ± 1.00 84.68 ± 0.26 92.89 ± 0.11 50.06 ± 1.21 12.08
GPT-GNN 84.69 ± 0.09 71.82 ± 0.13 81.45 ± 0.18 91.07 ± 0.21 95.02 ± 0.15 70.16 ± 0.10 10.33
RRL 57.29 ± 0.13 59.57 ± 1.77 75.06 ± 0.37 84.71 ± 0.95 94.90 ± 0.02 66.36 ± 0.13 14.33
GraphMAE 85.45 ± 0.40 72.48 ± 0.77 81.10 ± 0.40 93.47 ± 0.04 96.13 ± 0.03 71.86 ± 0.00 6.50
GraphMAE2 84.50 ± 0.60 73.40 ± 0.30 81.40 ± 0.50 92.13 ± 0.12 95.44 ± 0.08 71.89 ± 0.03 8.25
MaskGAE 87.31 ± 0.05 75.20 ± 0.07 83.58 ± 0.45 92.31 ± 0.05 95.79 ± 0.02 70.99 ± 0.12 4.50
Bandana 84.62 ± 0.37 73.60 ± 0.16 83.53 ± 0.51 93.10 ± 0.05 95.57 ± 0.04 71.09 ± 0.24 6.33
AUG-MAE 84.30 ± 0.40 73.20 ± 0.40 81.40 ± 0.40 92.15 ± 0.22 95.34 ± 0.60 71.90 ± 0.20 8.58
S2GAE 86.15 ± 0.25 74.60 ± 0.06 84.19 ± 0.21 91.70 ± 0.08 95.82 ± 0.03 72.02 ± 0.05 4.50
Cur-MGAE 87.25 ± 0.55 74.68 ± 0.37 85.86 ± 0.14 92.69 ± 0.17 95.91 ± 0.05 73.00 ± 0.06 2.83

Baselines. We compare Cur-MGAE against two groups
of state-of-the-art baselines. The first group in-
cludes contrastive graph self-supervised learning meth-
ods: DGI (Veličković et al., 2019), GIC (Mavromatis &
Karypis, 2021), MVGRL (Hassani & Khasahmadi, 2020),
and BGRL (Thakoor et al., 2022). The second group in-
cludes generative graph SSL methods such as GAE (Kipf
& Welling, 2016), GraphSAGE (Hamilton et al., 2017),
ARGVA (Pan et al., 2019), GPT-GNN (Hu et al., 2020b),
RRL (Zhu et al., 2020), GraphMAE (Hou et al., 2022),
GraphMAE2 (Hou et al., 2023), MaskGAE (Li et al., 2023d),
Bandana (Zhao et al., 2024), AUG-MAE (Wang et al., 2024),
and S2GAE (Tan et al., 2023).

3.2. Experimental Results

Node Classification. Table 1 summarizes the node clas-
sification accuracy of Cur-MGAE and all baselines. Our
method outperforms both contrastive and generative self-
supervised baselines, achieving the highest average rank.
This result demonstrates the benefit of scheduling train-
ing data using a difficulty-aware curriculum derived from
reconstruction residuals, which enables more effective rep-
resentation learning. For instance, Cur-MGAE improves
classification accuracy by 1.67% on Pubmed and nearly 1%
on OGBN-arxiv compared to the strongest baseline.

Link Prediction. Table 2 presents the link prediction
performance of Cur-MGAE and baseline methods1. The
results indicate that generative graph SSL methods (e.g.,
GraphMAE, MaskGAE, S2GAE) generally outperform
contrastive methods, highlighting the effectiveness of the

1Note that GraphMAE2 and AUG-MAE are omitted here since
they are node or graph classification methods and are not designed
for link prediction tasks.

reconstruction-based pretext tasks that recover masked struc-
tures from the remaining graph context. Our curriculum-
based method Cur-MGAE achieves the best performance
on 2 out of 6 datasets and reports competitive results on the
remaining datasets. For example, it improves performance
by approximately 2% over the strongest baselines on OGBL-
ddi and OGBL-ppa. This improvement is attributed to Cur-
MGAE ’s ability to adaptively select training samples based
on task difficulty, unlike most baselines that treat all training
data equally, leading to suboptimal results. MaskGAE (Li
et al., 2023d), a strong baseline that jointly reconstructs
masked edges and node degrees, performs well on smaller
datasets but underperforms on large-scale benchmarks. A
plausible explanation is that it overlooks the varying dif-
ficulty of reconstructing different edges, which becomes
more impactful in large, complex graphs where informative
representations are harder to extract. In contrast, our method
introduces a curriculum-driven strategy that prioritizes eas-
ier samples in early training stages and progressively incor-
porates harder ones. Notably, none of the baselines achieves
consistently strong performance across all datasets, whereas
Cur-MGAE demonstrates stable and superior effectiveness.

3.3. Visualization of Learned Edge Selection
Curriculum

To qualitatively evaluate the learned edge selection strat-
egy, we construct synthetic datasets with ground-truth edge
difficulty labels, following previous works (Karimi et al.,
2018; Abu-El-Haija et al., 2019; Zhang et al., 2023a). Each
synthetic graph consists of 5,000 nodes partitioned into 10
equally sized groups, with node labels ranging from 1 to 10.
The corresponding visualization is provided in Appendix F.
The node features are generated from overlapping multi-
Gaussian distributions that define each node’s position in
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Table 2. Link prediction results (%) of our proposed method and baselines. Cur-MGAE achieves consistently strong performance across
both small-scale and large-scale benchmark datasets. “–” indicates out-of-memory errors on a 24GB GPU, while “/” denotes that the
method is not applicable to the corresponding dataset.

Dataset Cora Citeseer Pubmed OGBL-ddi OGBL-collab OGBL-ppa RankMetric AUC AUC AUC Hits@20 Hits@50 Hits@10

DGI 90.02 ± 0.80 95.53 ± 0.40 91.24 ± 0.60 – – – 11.17
GIC 93.54 ± 0.60 97.04 ± 0.50 93.71 ± 0.30 – – – 9.67
MVGRL 87.46 ± 0.38 88.95 ± 0.66 88.36 ± 0.59 – – – 13.33
BGRL 87.08 ± 0.24 85.82 ± 0.36 96.75 ± 0.12 – 21.58 ± 1.92 – 12.17
GAE 91.09 ± 0.01 90.52 ± 0.04 96.40 ± 0.01 37.07 ± 5.07 44.75 ± 1.07 2.52 ± 0.47 7.33
GraphSage 86.33 ± 1.06 85.65 ± 2.56 89.22 ± 0.87 53.90 ± 4.74 54.63 ± 1.12 1.87 ± 0.67 9.00
ARGVA 92.40 ± 0.00 91.94 ± 0.00 96.81 ± 0.00 20.43 ± 4.66 28.39 ± 2.51 0.41 ± 0.26 7.83
GPT-GNN 92.28 ± 0.31 91.36 ± 0.66 97.83 ± 0.03 37.05 ± 5.96 42.41 ± 1.80 1.57 ± 0.94 6.67
RRL 88.46 ± 1.85 85.47 ± 1.01 93.10 ± 0.49 16.84 ± 2.23 29.88 ± 2.94 0.24 ± 0.19 10.83
GraphMAE 89.19 ± 0.00 91.20 ± 0.11 93.72 ± 0.00 – 22.79 ± 1.62 0.18 ± 0.28 10.92
MaskGAE 96.66 ± 0.17 98.00 ± 0.23 98.84 ± 0.04 16.25 ± 1.60 32.47 ± 0.59 0.23 ± 0.04 5.00
Bandana 95.71 ± 0.12 96.89 ± 0.21 97.26 ± 0.16 / 48.67 ± 3.82 1.32 ± 1.26 4.92
S2GAE-SAGE 95.05 ± 0.76 94.85 ± 0.49 97.38 ± 0.17 66.00 ± 9.49 49.27 ± 0.96 1.37 ± 0.38 4.67
S2GAE-GCN 93.52 ± 0.23 93.29 ± 0.49 98.30 ± 0.12 65.91 ± 3.50 54.74 ± 1.06 3.98 ± 1.33 3.83
Cur-MGAE 95.22 ± 0.54 95.20 ± 0.31 98.43 ± 0.06 68.50 ± 5.06 52.28 ± 1.35 5.96 ± 0.96 2.67

the feature space. The labels are then assigned according
to the feature distributions, resulting in 10 distinct classes.
Edge difficulty is defined based on the label similarity be-
tween node pairs: edges between nodes with identical labels
are considered easy, those between adjacent labels are of
medium difficulty, and those connecting nodes with distant
labels are deemed hard to reconstruct. To control the preva-
lence of easy edges, we introduce a homophily coefficient
(homo) that specifies the ratio of easy edges in the graph.
For all other potential edges, the connection probability
decreases exponentially with label distance. Formally, the
probability of an edge between nodes u and v is defined as:
puc ∝ e−|cu−cv|, where |cu − cv| denotes the shortest label
distance in a circular label arrangement. We generate three
synthetic datasets by setting the homophily coefficient to 0.1,
0.5, 0.9, and split each graph into training, validation, and
test sets with equal numbers of nodes.

Learned Edge Selection Curriculum. Using the syn-
thetic datasets described above, we visualize and compare
the learned edge selection curriculum with the ground-truth
edge difficulty distribution. Figure 2 shows the proportion
of selected edges categorized as easy, medium, and hard
throughout training. In this figure, each row corresponds
to a different homophily coefficient, while each column
represents a different split ratio, a hyperparameter that con-
trols the trade-off between exploration and exploitation in
edge selection. Across all settings, we observe a consistent
trend: the model initially favors selecting easier edges and
gradually incorporates harder ones as training progresses.
This behavior is consistent with the intended design of our
curriculum-driven training strategy. Specifically, in early
epochs, the model focuses on easier edges that align with
its current learning capacity. As training advances and the

model becomes more expressive, it begins to select increas-
ingly difficult edges, effectively expanding its learning scope
in a controlled, progressive manner. Interestingly, the ho-
mophily coefficient influences the dynamics of the easy-to-
hard transition. As illustrated in the stacked plots, where
the blue, orange, and red regions represent the relative pro-
portions of selected easy, medium, and hard edges at each
epoch, low homophily leads to a more aggressive curricu-
lum. In this setting, the model selects a substantial fraction
of medium and hard edges even in the early stages of train-
ing. In contrast, under high homophily, early edge selection
is dominated by easy edges, with medium and hard edges
incorporated more gradually. This pattern suggests that in
highly homophilous graphs, the model adopts a more con-
servative learning trajectory, initially relying on structurally
similar (and easier) edges before progressively transition-
ing to more challenging ones. These visualizations confirm
that our structure-aware masking curriculum behaves as ex-
pected, progressively selecting edges from easier to harder
throughout the training process.

3.4. Ablation Studies

To evaluate the effectiveness of our key modules and designs,
we conduct ablation studies by modifying the components
of Cur-MGAE . For simplicity, we present results on Cora,
Citeseer, OGBL-ddi, and Coauthor-CS in Table 3, with
similar trends observed on the remaining datasets. We use
AUC (%) for link prediction and accuracy (%) for node
classification as evaluation metrics.

Variant ‘w/o Curri.’. It disables the complexity-guided
curriculum masking module (Section 2.2) and instead ap-
plies random masking. The performance drop demonstrates
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Figure 2. Edge selection dynamics across synthetic datasets under varying homophily coefficients (rows) and split ratios (columns). At
each epoch, the stacked colored areas represent the relative proportions of selected easy (blue), medium (orange), and hard (red) edges.

that treating all samples equally during training can be sub-
optimal. This supports the benefit of our structure-aware
curriculum design in promoting better performance.

Variant ‘split ratio is 0’. Setting the split ratio to 0 means
that the self-paced mask scheduler (Section 2.3) randomly
selects a fixed number of edges without considering their
difficulty scores. Although this introduces stochasticity
and helps prevent overfitting, the lack of difficulty-aware
edge selection leads to noticeable performance degradation,
highlighting the importance of meaningful edge scheduling.

Variant ‘split ratio is 1’. In this variant, we set the split
ratio to 1, which removes the randomness in the edge selec-
tion process of the self-paced mask scheduler (Section 2.3).
Together with the previous variant, these two variants aim to
assess the effectiveness of the self-paced scheduling mech-
anism. Without randomness, the scheduler consistently
selects edges with the smallest difficulty scores during early
training stages. This deterministic behavior may lead to
overfitting and limit the model’s ability to generalize, as re-
flected in the performance drop compared to the full model.

Variant ‘w/o CC Dec.’. This variant evaluates the impact
of our specially designed cross-correlation decoder in the
structure-aware masked autoencoder (Section 2.1). We re-
place it with a simpler inner product decoder while keeping
all other components unchanged. The significant drop in per-
formance demonstrates that the cross-correlation decoder,
by capturing multi-granular shared features between con-
nected nodes, facilitates more informative representation
learning and improves reconstruction accuracy.

Variant ‘w/o CC Dec. & Curri.’. In this variant, both the
decoder and the curriculum masking are removed: we use
an inner product decoder and randomly mask the training
samples. This combination results in the worst performance
across all settings, confirming that the two modules, i.e.,
decoder and curriculum, play synergistic and crucial roles
in achieving strong representation learning.

Overall, these ablation studies confirm the importance of
the key components in our proposed method. The tai-
lored structure-aware curriculum enables the identification
of more informative edges by leveraging difficulty scores,
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Table 3. Ablation studies on key components. “Curri.” refers to the complexity-guided curriculum masking module, and “CC Dec.”
denotes the cross-correlation decoder.

Link Prediction Node Classification
Datasets Cora Citeseer OGBL-ddi Cora Citeseer Coauthor-CS

Cur-MGAE 95.22 ± 0.54 95.20 ± 0.31 68.50 ± 5.06 87.25 ± 0.55 74.68 ± 0.37 92.69 ± 0.17
w/o Curri. 92.89 ± 0.40 93.66 ± 0.23 61.70 ± 9.64 86.08 ± 0.15 73.92 ± 0.44 91.67 ± 0.03
split ratio is 1 93.80 ± 1.24 92.17 ± 1.13 62.90 ± 11.31 86.13 ± 0.42 74.39 ± 0.17 91.58 ± 0.12
split ratio is 0 94.12 ± 0.47 92.21 ± 0.52 62.49 ± 8.97 86.93 ± 0.15 74.71 ± 0.24 91.69 ± 0.02
w/o CC Dec. 87.43 ± 0.53 85.49 ± 0.35 22.69 ± 3.65 83.05 ± 0.90 70.15 ± 0.32 90.55 ± 0.24
w/o CC Dec. & Curri. 87.21 ± 0.69 85.18 ± 0.99 20.73 ± 1.72 82.89 ± 0.11 69.09 ± 0.93 89.93 ± 0.03

while the split ratio introduces a controlled level of stochas-
ticity to avoid overfitting. Meanwhile, the cross-correlation
decoder mitigates the representational limitations introduced
by the masking process and significantly enhances the re-
construction quality.

4. Related Work
Graph Self-Supervised Learning. Graph self-supervised
learning (SSL) techniques (Liu et al., 2022; You et al.,
2020; Peng et al., 2020; Xu et al., 2021; Sun et al., 2023b;
Li et al., 2022c; 2021b; 2024a) are typically categorized
into contrastive and generative paradigms. Recently, con-
trastive methods have gained significant attention. These
approaches primarily focus on negative sampling strate-
gies, such as corruption-based negative pair construction in
DGI (Veličković et al., 2019), and in-batch negatives as used
in GCA (Zhu et al., 2021). In contrastive learning, graph
augmentation plays a critical role in creating effective train-
ing signals. However, the theoretical understanding of graph
augmentation remains limited, raising concerns about its
label invariance and optimality. In contrast, generative SSL
methods aim to reconstruct missing parts of input graphs
and are generally divided into autoregressive and autoen-
coding models. Although generative approaches have his-
torically underperformed compared to contrastive methods,
several notable autoregressive models have emerged, such
as GPT-GNN (Hu et al., 2020b). In the autoencoding cate-
gory, early models like GAE and VGAE (Kipf & Welling,
2016) set foundational benchmarks. More recent advances
include GraphMAE (Hou et al., 2022), GraphMAE2 (Hou
et al., 2023), GigaMAE (Shi et al., 2023), SeeGera (Li
et al., 2023e), RARE (Tu et al., 2023), S2GAE (Tan et al.,
2023), and Bandana (Zhao et al., 2024). Nonetheless, most
existing methods neglect the varying difficulty levels of self-
supervised tasks, treating all training samples equally and
resulting in suboptimal performance on downstream tasks.

Curriculum Learning. Curriculum Learning (CL) is a
training strategy that starts with simpler tasks and gradually
moves to more complex ones, inspired by the way humans
learn in educational settings (Bengio et al., 2009; Wang
et al., 2021a; Zhou et al., 2023; 2024; Huang et al., 2024;
Zhang et al., 2024; Yao et al., 2024; Ge et al., 2025). A foun-

dational approach in this domain is the “Baby Step” algo-
rithm (Spitkovsky et al., 2010), which controls both the com-
plexity and order of training samples. This idea was later
extended to the self-paced learning paradigm (Kumar et al.,
2010), which selects training samples based on their loss
values, allowing models to learn at their own pace. In addi-
tion, several automatic CL frameworks have been proposed,
including transfer teacher (Hacohen & Weinshall, 2019), re-
inforcement learning-based curriculum teacher (Zhao et al.,
2020), and others customized for different datasets, mod-
els, and objectives (Sinha et al., 2020). CL has also been
integrated into various domains such as disentangled recom-
mendation systems (Chen et al., 2021; Wang et al., 2023),
combinatorial optimization (Zhang et al., 2022c), neural
architecture search (Zhou et al., 2022; Yao et al., 2024;
Qin et al., 2023), and video grounding (Lan et al., 2023).
Several studies have extended CL to graph domains (Li
et al., 2023b), such as GNN-CL (Li et al., 2024b) and Cur-
Graph (Wang et al., 2021b). A central component of CL
methods is the mechanism to assess sample complexity and
guide the training schedule by determining the order or
relative importance of samples. However, most existing
methods heavily rely on label supervision to train encoders
and overlook self-supervised settings where labels are not
available. More importantly, these methods typically treat
training samples as independent instances, whereas our ap-
proach addresses a more challenging structure-aware cur-
riculum setting in which training samples are inherently
interconnected and thus cannot be treated as independent.

5. Conclusion
In this paper, we propose a graph self-supervised learning
strategy based on curriculum learning, named Cur-MGAE,
which builds upon a masked graph autoencoder framework.
Our method assesses the difficulty of reconstructing masked
edges and thus guides the model to learn in an easy-to-hard
manner. This approach leads to the acquisition of more infor-
mative graph representations. We provide a theoretical anal-
ysis of the convergence properties of the proposed method.
Extensive experiments on real-world benchmarks demon-
strate that our proposed method consistently outperforms
state-of-the-art graph self-supervised learning baselines in
both node classification and link prediction tasks.
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In the Appendix, we begin by summarizing the key notations in Section A. Then, we prove the convergence of our proposed
method in Section B. We further elaborate on related works in Section C. Additional experimental details are provided in
Section D. In Section E, we further analyze the time and space complexity to demonstrate the efficiency of our method.
Finally, the visualization of the synthetic dataset is shown in Section F, and we present additional experimental results in
Section G.

A. Notations
The key notations are summarized in Table 4.

Table 4. Notations.
Notation Description

V Node set
E Edge set

Emask Masked edges
X Node feature matrix
A Adjacency matrix

Amask Adjacency matrix of the masked edges
A(t) Adjacency matrix of curriculum selected edges at step t
ADES Adjacency matrix of the difficult-based selected edges
ARES Adjacency matrix of the random-based selected edges
Are Adjacency matrix of reconstructed edges
Ã Predicted adjacency matrix

LSSL Loss function for self-supervised learning
LSPCL Loss function for self-paced curriculum learning
h
(k)
v Embedding of node v at the k-th layer
Nv Set of direct neighbors of node v

COM(·) Combination function for updating node embeddings
AGG(·) Aggregation function for neighborhood information

N Number of nodes
E Number of edges
d Dimensionality of embeddings

ENC(·) Encoder
DEC(·) Decoder
h
(k)
ev,u Edge representation between nodes v and u at layer k
K Number of layers
I Number of neighbors per node for aggregation
K Number of edges that need to be masked in the training process
g(·) Predicted probability of the presence of an existing edge
S(t) Edge selection matrix at step t
λ Regularization coefficient taking control of the number of edges to be selected
β Balancing hyper-parameter

|| · || l2 norm
w GNN model parameter
γ Training transition smoothing regularizer coefficient

B. Theoretical Analyses
Following the work (Zhang et al., 2023a), we have the following convergence guarantees for Algorithm 1:

B.1. Proof of Theorem 1

Proof. Assuming the second-order derivatives of LSSL and f(S;λ,A) are continuous, and given that the sequence
(w(t),S(t)) is bounded, the second-order derivatives of LSSL and f(S;λ,A) are also bounded (Zhang et al., 2023a). This
implies that

max
{∥∥∥∇2

wLSSL(X,A(t−1);w)
∥∥∥ ,∥∥∇2

Sf(S;λ,A)
∥∥} ≤ p, (6)

where p > 0 is a constant.
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In addition, the second-order derivatives of the reconstruction term
∑

i,j Sij

∥∥∥Aij − Ã
(t)
ij

∥∥∥ are also bounded, which implies

max


∥∥∥∥∥∥∇2

w

∑
i,j

Sij

∥∥∥Aij − Ã
(t)
ij

∥∥∥
∥∥∥∥∥∥ ,

∥∥∥∥∥∥∇2
S

∑
i,j

Sij

∥∥∥Aij − Ã
(t)
ij

∥∥∥
∥∥∥∥∥∥
 ≤ q,

where q > 0 is a constant and Ã is a function of w.

As a result, the objective function Lall is bi-smooth, i.e.,

max
{∥∥∇2

wLall

∥∥ ,∥∥∇2
SLall

∥∥} ≤ p+ q,

and Lall satisfies Assumption 4 in (Li et al., 2019b). Therefore, according to Theorem 10 in (Li et al., 2019b), the second-
order derivative of Lall is continuous, and for any γ > p+ q, any bounded sequence (w(t),S(t)) generated by Algorithm 1
almost surely avoids convergence to a strict saddle point of Lall (Zhang et al., 2023a).

B.2. Proof of Theorem 2

Proof. As established in the previous proof, the objective function Lall satisfies Assumption 4 in (Li et al., 2019b).
Furthermore, since LSSL(X,A(t−1);w), f(S;λ,A), and

∑
i,j Sij∥Aij − Ã

(t)
ij ∥ all satisfy the Kurdyka–Łojasiewicz (KL)

property, the composite objective Lall also satisfies the KL property. As shown previously, Lall is continuous. In addition,
according to the results in (Wheeden et al., 1977), the continuous differentiability of Lall implies that its gradient is Lipschitz
continuous. Therefore, Lall satisfies Assumption 1 in (Li et al., 2019b). Since Lall satisfies both Assumptions 1 and 4, we
can invoke Corollary 3 in (Li et al., 2019b) to conclude that for any γ > p+ q, any bounded sequence (w(t),S(t)) generated
by Algorithm 1 will almost surely converge to a second-order stationary point of Lall (Zhang et al., 2023a).

C. Additional Related Works
Here we provide additional discussions on related work in the areas of graph neural networks (GNNs) and graph adversarial
training, complementing our earlier review on graph self-supervised learning and curriculum learning.

Graph Neural Networks. Graph-structured data are ubiquitous across a wide range of real-world applications (Hu et al.,
2020a; Li et al., 2019a; 2021a). The emergence of graph neural networks (GNNs) (Kipf & Welling, 2017; Veličković
et al., 2018; Xu et al., 2019; Li et al., 2022b; Cai et al., 2024; Li et al., 2023c; Zhang et al., 2023b; Li et al., 2025;
Chen et al., 2025) has led to significant advances in graph representation learning (Zhang et al., 2020), demonstrating
strong performance in tasks such as node classification (Kipf & Welling, 2017), link prediction (Zhang & Chen, 2018),
and graph-level classification (Xu et al., 2019). GNNs have also shown promise in high-impact domains including drug
discovery (Wu et al., 2018), protein function prediction (Jiang et al., 2017), and traffic forecasting (Jiang & Luo, 2021).
These models typically rely on neighborhood aggregation or message-passing mechanisms, where node representations are
iteratively refined by aggregating information from local neighbors (Veličković et al., 2018; Xu et al., 2019). Despite their
success, many state-of-the-art GNNs (Ma et al., 2019; Ji et al., 2021; Fan et al., 2021; Gao et al., 2021; Miao et al., 2021; Ye
& Ji, 2021; Zhang et al., 2021b; 2022b; Li et al., 2022d;a) require end-to-end supervised training with task-specific labels,
which are often scarce or expensive to obtain (Feng et al., 2023). In contrast, our proposed method adopts a generative
self-supervised framework that reduces dependence on labeled data, making it more suitable for large-scale or label-deficient
graph datasets.

Graph Adversarial Training. Graph adversarial training is a robust learning paradigm that enhances model generalization
and stability by introducing adversarial perturbations or generating adversarial examples. These methods typically involve
a generator–discriminator setup, where the generator attempts to craft perturbations or fake samples to deceive the
discriminator, which in turn is trained to resist such attacks. For example, GraphGAN (Wang et al., 2018) introduces
adversarial training into graph representation learning by generating synthetic links and learning to discriminate between
real and fake connections. ARGA and ARVGA (Pan et al., 2020) enforce the latent representations to match a given
prior distribution using adversarial regularization, followed by graph reconstruction. GCA (Zhu et al., 2021) leverages
centrality-based graph augmentations to emphasize critical structures and adaptively perturb unimportant components.
AUG-MAE (Wang et al., 2024) introduces an adversarial masking strategy to generate hard-to-align node features, thereby
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improving contrastive alignment. Unlike these adversarial learning approaches, our curriculum-based masking strategy
explicitly defines a progression from easy to hard reconstruction tasks. This structured learning path is fundamentally
distinct from adversarial objectives and focuses on improving representation learning by aligning the training dynamics with
task difficulty.

D. Additional Experimental Details
D.1. Dataset Statistics

We summarize the statistics of the real-world datasets used in our experiments in Table 5. For datasets from the OGB
benchmark, we follow the standardized experimental protocol, which provides predefined train/validation/test splits.
According to the official guidelines, validation labels are intended solely for hyperparameter tuning and are not permitted
to be used during model training. Notably, the OGB guidelines specify an exception for the OGBL-collab dataset, where
an alternative protocol allows the use of validation labels during training. However, for consistency and fairness across
experiments, we adopt the stricter protocol for all three OGB link prediction datasets used in this study—OGBL-collab,
OGBL-ddi, and OGBL-ppa—where validation labels are excluded from the training process.

Table 5. Summary of the dataset statistics.
Dataset # Nodes # Edges # Features Train/Val/Test # Classes

Cora 2,708 5,429 1,433 85/5/10 7
Citeseer 3,312 4,660 3,703 85/5/10 6
Pubmed 19,717 44,338 500 85/5/10 3

Coauthor-CS 18,333 81,894 6,805 – 15
Coauthor-Physics 34,493 247,962 8,415 – 5

ogbn-arxiv 169,343 1,166,243 128 – 40
OGBL-ddi 4,267 1,334,889 – 80/10/10 –

OGBL-collab 235,868 1,285,465 128 92/4/4 –
OGBL-ppa 576,289 30,326,273 58 70/20/10 –

D.2. Dataset License

The datasets included in this work are publicly available as follows:

1. Plantoid Datasets: https://github.com/kimiyoung/planetoid/raw/master/data/ with MIT License.

2. Coauthor Datasets: https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ with MIT License.

3. Open Graph Benchmark (OGB): https://ogb.stanford.edu.docs/graphprop/ with MIT License.

D.3. Implementation Details

We implement our models using PyTorch and employ Stochastic Gradient Descent (SGD) as the optimizer. The number of
training epochs is set to 400 for node classification tasks and 200 for link prediction tasks, with an early stopping patience of
50 steps.

Our model supports various message-passing GNNs, and we adopt GCN (Kipf & Welling, 2017) and GraphSage (Hamilton
et al., 2017) as the primary backbones in our experiments. For large-scale datasets from the OGB benchmark—OGBN-arxiv,
OGBN-ddi, OGBL-collab, and OGBL-ppa—we set the representation dimensionality d to 256 and use a 3-layer GNN. For
all other datasets, we set d = 128 and use a 2-layer GNN.

The cross-correlation decoder is implemented as a two-layer multilayer perceptron (MLP) with ReLU activation, and its
hidden dimension is selected from {128, 256, 512, 1024}. The values for split ratio and mask ratio are tuned within the
ranges [0, 1] and [0.4, 1] (with a step size of 0.1), respectively. The dropout rate is chosen from {0.3, 0.4, 0.5, 0.6}.

The hyperparameter λ controls the number of edges selected during training. A larger λ promotes the selection of more
edges for masking and reconstruction. To facilitate an easy-to-hard curriculum learning scheme, i.e., progressively increasing
the difficulty of the training samples by masking more edges, the number of masked edges K should increase over training
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steps. Accordingly, λ is designed to increase with the iteration step t, following the schedule below (Zhang et al., 2023a):

λ =

{
λinitial

T ·⌊ 2
3⌋+1−t

if t < T ·
⌊
2
3

⌋
,

λinitial otherwise,
(7)

where T denotes the total number of training epochs, and t is the current training step. This scheduling rule can be adapted
to support alternative pacing strategies if needed.

For node classification, we evaluate the learned node representations using a downstream linear SVM classifier. We report
the average 10-fold cross-validation accuracy with standard deviation over three repeated runs. For link prediction, we
randomly sample an equal number of negative edges as positive ones to compute the AUC score. Results are reported as the
mean and standard deviation over five repeated runs. Unless otherwise specified, all remaining hyperparameters are kept
consistent with the settings in S2GAE (Tan et al., 2023) to ensure a fair comparison.

D.4. Hardware and Software Configuration

We conduct the experiments with the following hardware and software configurations:

• Operating System: Ubuntu 20.04.6 LTS

• CPU: Intel(R) Xeon(R) Gold 6348 CPU@2.60GHz

• GPU: NVIDIA GeForce RTX 4090 GPU

• Software: Python 3.8.13; PyTorch 2.0.1; PyTorch Geometric 2.3.1.

E. Additional Complexity Analysis
E.1. Time Complexity Analysis

To further assess the efficiency of our method in practice, we compare its training time per epoch against the strong baseline
S2GAE (Tan et al., 2023) under identical hyperparameter settings. We report the average training time and standard deviation
per epoch in Table 6. The results demonstrate that our proposed Cur-MGAE model achieves superior efficiency compared to
S2GAE.

Table 6. Empirical Time Comparisons.

Link Prediction Node Classification
Cora Citeseer OGBL-ppa Cora Citeseer OGBN-arxiv

Cur-MGAE 0.045 ± 0.003s 0.043 ± 0.004s 79.117 ± 1.753s 0.093 ± 0.020s 0.089 ± 0.015s 1.718 ± 0.593s
S2GAE 0.048 ± 0.008s 0.045 ± 0.009s 77.469 ± 1.224s 0.100 ± 0.020s 0.098 ± 0.009s 2.600 ± 0.357s

E.2. Space Complexity Analysis

As for space complexity, our model adopts GCN and GraphSAGE as backbone architectures, whose space complexities are
given by O(N ×d+E+

∑K
l=1 dl−1×dl+N ×

∑K
l=1 dl) and O(N ×d+E+N ×IK +

∑K
l=1 dl−1×dl+N ×

∑K
l=1 dl),

respectively. Here, N denotes the number of nodes, E the number of edges, d the input feature dimension, K the number
of GNN layers, dl−1 and dl the input and output dimensions at layer l, and I the number of neighbors per node used in
aggregation. Beyond the GNN backbones, our model introduces a complexity-guided curriculum masking module and a
self-paced mask scheduler, both of which incur an additional space complexity of O(E). These modules are lightweight and
do not increase the overall space complexity beyond the standard GNN frameworks. Therefore, the space complexity of our
model remains comparable to that of existing methods.

To complement the theoretical analysis, we empirically compute the number of parameters of our proposed model and
various baseline methods under a unified configuration, where the embedding dimension is set to 128. The results are
presented in Table 7, with all parameter counts calculated on the Cora dataset. For GraphMAE, we follow the original setup
by using a GAT backbone with 4 attention heads.
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Table 7. Comparison of total number of parameters across models.
GraphMAE (Hou et al., 2022) MaskGAE (Li et al., 2023d) S2GAE (Tan et al., 2023) Cur-MGAE

Number of Parameters 419,253 266,370 282,369 291,871

We observe that, despite the introduction of relatively complex components, our method maintains a comparable number of
parameters to those of the baseline models.

F. Synthetic Dataset Visualization
Following previous work (Karimi et al., 2018; Abu-El-Haija et al., 2019; Zhang et al., 2023a), we build the synthetic dataset
shown in Figure 3 to test the curriculum schedule and performance of our proposed model. Each point represents a node,
with its x and y coordinates sampled from overlapping multi-Gaussian distributions. The nodes are categorized into 10
classes based on their features, and the corresponding classes are indicated by different colors. The difficulty of each edge is
determined based on the relationship between the labels of its incident nodes: edges connecting nodes with the same label
are considered easy, edges connecting nodes with adjacent labels are medium, and edges connecting nodes with non-adjacent
labels are categorized as hard.

Figure 3. Visualization of the synthetic dataset. Each synthetic graph consists of 5,000 nodes, which are assigned to one of 10 classes
based on their features. Edges are generated according to a probability that decreases with the cyclic distance between node labels.
Specifically, the connection probability between nodes u and v is proportional to e−|cu−cv|, where |cu − cv| denotes the minimal cyclic
distance between labels cu and cv in a circular label space.

G. Additional Experiments
G.1. Additional Comparisons with Contrastive Graph SSL Methods

Since the majority of the aforementioned baselines adopt generative paradigms, we additionally compare node classification
performance of representative contrastive graph self-supervised methods to provide a more comprehensive evaluation, as
shown in Table 8.
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Table 8. Node classification accuracy (%) of our proposed method compared with contrastive baselines. Bold values indicate the best
performance across all methods. ‘–’ indicates that the method was not evaluated on the dataset due to unavailable code or omitted
experiments in the original paper. Rank denotes the average performance rank across datasets. Our method achieves the highest accuracy
across all datasets.

Cora Citeseer Coauthor-Physics Rank

GMI (Peng et al., 2020) 82.4 ± 0.6 71.7 ± 0.2 – 12.83
InfoGCL (Xu et al., 2021) 83.5 ± 0.3 73.5 ± 0.4 – 9.33

CCA-SSG (Zhang et al., 2021a) 84.2 ± 0.4 73.1 ± 0.3 95.38 ± 0.06 7.50
GCA-EV (Yu et al., 2023) – – 95.73 ± 0.03 10.67

AF-GCL (Wang et al., 2022a) 83.3 ± 0.1 72.1 ± 0.4 95.75 ± 0.15 7.17
AFGRL (Lee et al., 2022) 81.3 ± 0.2 68.7 ± 0.3 95.69 ± 0.10 7.67
SUGRL (Mo et al., 2022) 83.4 ± 0.5 73.0 ± 0.4 95.38 ± 0.11 6.33
C2F (Zhao et al., 2023) – – 94.09 8.33

COSTA-SV (Zhang et al., 2022a) 84.3 ± 0.3 72.8 ± 0.3 95.74 ± 0.02 5.50
COSTA-MV (Zhang et al., 2022a) 84.3 ± 0.2 72.9 ± 0.3 95.60 ± 0.02 5.00

IAG (Sun et al., 2023a) 86.1 73.6 – 4.00
S3-CL (Ding et al., 2023) 84.5 ± 0.4 74.6 ± 0.4 – 3.33
H-GCL (Zhu et al., 2023) 84.8 ± 0.5 74.2 ± 0.3 – 2.83

IGCL (Li et al., 2023a) 79.3 ± 0.1 64.2 ± 0.1 95.85 ± 0.10 2.67
PHASES (Sun et al., 2023b) – – 95.82 ± 0.11 2.67
MA-GCL (Gong et al., 2023) 83.3 ± 0.4 73.6 ± 0.1 – 2.00

Cur-MGAE 87.3 ± 0.6 74.7 ± 0.4 95.91 ± 0.05 1.00

G.2. Experiment Results on Synthetic Datasets

We further conduct node classification and link prediction experiments on three synthetic datasets with varying levels
of homophily, characterized by homophily coefficients of 0.1, 0.5, and 0.9 (denoted as Homo = 0.1, 0.5, and 0.9). Two
representative baselines are adopted for comparison, and we report both node classification accuracy and link prediction
AUC in the following table.

Table 9. Results on synthetic datasets.
Homo=0.1 Homo=0.5 Homo=0.9

Link Pred. Node Class. Link Pred. Node Class. Link Pred. Node Class.

Cur-MGAE 52.73 ± 2.56 46.79 ± 0.11 57.20 ± 0.12 82.76 ± 0.67 80.97 ± 0.36 99.96 ± 0.02
S2GAE(Tan et al., 2023) 50.04 ± 0.08 34.09 ± 0.13 51.28 ± 1.27 81.90 ± 0.17 80.48 ± 0.39 98.86 ± 0.00
BGRL(Thakoor et al., 2022) 51.84 ± 1.88 22.93 ± 1.38 53.46 ± 0.02 40.07 ± 4.40 80.68 ± 0.55 73.73 ± 0.68

The results show that our model consistently achieves the highest accuracy across all settings for both link prediction
and node classification tasks. This demonstrates the effectiveness of the proposed structure-aware curriculum in learning
powerful and informative node representations.

G.3. Hyperparameter Sensitivity

We investigated the sensitivity of some important hyperparameters of our method.

Effectiveness of the split ratio. The split ratio is a critical hyperparameter that introduces randomness into the edge
selection process, thereby helping to mitigate overfitting. It determines the proportion of masked edges selected based on
the difficulty-aware strategy. A lower split ratio implies that more edges are selected randomly, while a value of 1 indicates
full reliance on difficulty-based selection. Specifically, when the split ratio is 0, edge masking is entirely random; when
it is 1, edge selection is entirely difficulty-guided. As illustrated in Figure 4, an appropriately chosen split ratio strikes a
balance between exploitation (leveraging informative edges) and exploration (incorporating diverse edge patterns), thereby
enhancing overall model performance.
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Figure 4. Impact of split ratio, mask ratio, and λinitial on model performance, based on node classification results on Cora and Pubmed.

Effectiveness of the mask ratio. The mask ratio specifies the maximum proportion of edges that can be masked during
training. A small mask ratio restricts the number of masked edges, limiting the model’s exposure to sufficient learning
signals and potentially trapping it in overly simple pretext tasks (e.g., predicting 10% of the edges using the remaining
90%). Conversely, an excessively high mask ratio (e.g., predicting 90% of the edges from only 10%) may lead to overly
challenging tasks that degrade learning quality. Hence, selecting an appropriate mask ratio is essential for ensuring the
training process remains both effective and stable.

Effectiveness of λinitial. The hyperparameter λinitial governs the pace of the structure-aware curriculum learning schedule.
As shown in Figure 4, setting λinitial = 1 yields optimal performance on the Cora dataset. A smaller λinitial may lead to
inadequate exposure to masked edges, limiting training diversity and reducing performance. On the other hand, a large λinitial
can result in the model being prematurely exposed to difficult tasks, which hampers early-stage learning. A well-chosen
λinitial enables a smooth progression from simple to complex tasks, avoiding overfitting to trivial edges while ensuring
sufficient challenge during training. It reflects the significance of the structure-aware curriculum learning strategy of the
proposed method.
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